Crystallization and aging in hard-sphere glasses.
نویسندگان
چکیده
We report new results from our programme of molecular dynamics simulation of hard-sphere systems, focusing on crystallization and glass formation at high concentrations. First we consider a much larger system than hitherto, N = 86 400 equal-sized particles. The results are similar to those obtained with a smaller system, studied previously, showing conventional nucleation and growth of crystals at concentrations near melting and crossing over to a spinodal-like regime at higher concentrations where the free energy barrier to nucleation appears to be negligible. Second, we investigate the dependence on the initial state of the system. We have devised a Monte Carlo 'constrained aging' method to move the particles in such a way that crystallization is discouraged. After a period of such aging, the standard molecular dynamics programme is run. For a system of N = 3200, we find that constrained aging encourages caging of the particles and slows crystallization somewhat. Nevertheless, both aged and unaged systems crystallize at volume fraction φ = 0.61 whereas neither system shows full crystallization in the duration of the simulation at φ = 0.62, a concentration still significantly below that of random close packing.
منابع مشابه
Crystallization mechanism of hard sphere glasses.
In supercooled liquids, vitrification generally suppresses crystallization. Yet some glasses can still crystallize despite the arrest of diffusive motion. This ill-understood process may limit the stability of glasses, but its microscopic mechanism is not yet known. Here we present extensive computer simulations addressing the crystallization of monodisperse hard-sphere glasses at constant volu...
متن کاملCrystallizing hard-sphere glasses by doping with active particles.
Crystallization and vitrification are two different routes to form a solid. Normally these two processes suppress each other, with the glass transition preventing crystallization at high density (or low temperature). This is even true for systems of colloidal hard spheres, which are commonly used as building blocks for novel functional materials with potential applications, e.g. photonic crysta...
متن کاملCommon mechanism of thermodynamic and mechanical origin for ageing and crystallization of glasses
The glassy state is known to undergo slow structural relaxation, where the system progressively explores lower free-energy minima which are either amorphous (ageing) or crystalline (devitrification). Recently, there is growing interest in the unusual intermittent collective displacements of a large number of particles known as 'avalanches'. However, their structural origin and dynamics are yet ...
متن کاملCrystallization of hard-sphere glasses.
We study by molecular dynamics the interplay between arrest and crystallization in hard spheres. For state points in the plane of volume fraction (0.54 <or= varphi <or= 0.63) and polydispersity (0 <or= s <or= 0.085), we delineate states that spontaneously crystallize from those that do not. For noncrystallizing (or precrystallization) samples we find isodiffusivity lines consistent with an idea...
متن کاملRearrangements in hard-sphere glasses under oscillatory shear strain.
We investigate particle rearrangements in colloidal glasses subjected to oscillatory shear strain by the technique of light scattering (LS) echo. LS echo directly follows the motion of the particles through peaks (echoes) in the intensity autocorrelation function; the height of the peak measures the reversible motion in the sample. Polydisperse hard-sphere poly-methylmethacrylate particles were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 23 19 شماره
صفحات -
تاریخ انتشار 2011